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[] Therelationsbetweenmonthly-seasonalsoil moistureandprecipitationvariability are
investigatedby identifyingthe coupledpattemsof the two hydrologicalfields using
singularvaluedecomposition(SVD). SVD is a techniqueof principal componentanalysis
similar to empiricalorthogonalfunctions(EOF). However, it is appliedto two variables
simultaneouslyand is capableof extractingspatialpattemsof onevariablewhich are
closely connectedto variability of the other. Simulationis performedwith a regional
climatemodel to reproducesoil moistureandprecipitationin eastAsia. It is foundthat, of
a numberof leading soil moistureSVD pattems,thoserepresentingmeridional anomalies
havecloserrelationshipsto subsequentprecipitationvariability. The corresponding
atmosphericvariability is characterizedby oppositeanomaliesbetweenthe middleand
low troposphereandby comparableanomaliesbetweenthe middleand low latitudes.
Thesepattemsoccurmorefrequentlyduring springandsummer.Thetimelag correlations
of the SVD expansionserieswith soil moisture leadingprecipitationare much greater
than thoseof the original dataseriesandBOF expansionseries,Suggestingthat
predictabilityof monthly-seasonalprecipitationvariability could be improvedby using
soil moisturein the form of its coupledSVD pattemswith precipitation. INDEX TERMS:
1866 Hydrology: Soil moisture; 1854 Hydrology: Precipitation(3354); 3322 MeteorologyandAtmospheric
Dynamics:Land/atmosphereinteractions;3337 MeteorologyandAtmosphericDynamics: Numerical
modeling anddataassimilation;KEYWORDS:soil moisture,precipitation,coupledpatterns
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1. Introduction

[2] Soil moisturecontrolswaterandenergyexchangesby
providing available water for evapotranspirationand by
determining the partition of radiative energy absorbedon
the ground surface into sensibleand latent heat fluxes
[Avissar, 1995]. Thereforeanomaliesin soil moisture can
result in significantchangesin atmospherichydrologicaland
thermalprocessesby land-atmosphericinteractions.A large
numberof studies have indicatedthe importanceof soil
moisture in weatherand climate anomalies[e.g., Mintz,
1984;Dickinsonand Henderson-Sellers,1988;Avissarand
Verstraete,1990;KosterandSuarez,1995;Bettsetal., 1996;
AvissarandLiu, 1996].

[3] An importantpropertyof soil moistureis thecapacity
to retainanomaloussignalsoverlong periods.Anomaliesin
soil moisture can persist from months to seasons[e.g.,
Delworth and Manabe,1988, 1989; Vinnikovet al., 1996;
Liu andAvissar,1 999a, 1999b]. As aresult,soilmoisturecan
contributeto long-termatmosphericvariability overlandby
passingits relatively slow anomaloussignals to theatmo-
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sphere.Somerelationshipshavebeenobtainedbetweensoil
moisturewith subsequentmonthly-seasonalvariability in air
temperatureandother atmosphericvariablesat the surface
[e.g., Karl, 1986; Huang et al., 1996; Wangand Kumar,
1998].

[4] Regional climate models(RCMs), first developedat
theNational Centerfor AtmosphericResearch(NCAR) in
thelate1 980s[e.g.,Giorgi andBates,1989;Dickinsonetal.,
1989], haveemergedasan important tool for investigating
the relationshipsof soil moisture to regionalweatherand
climate anomalies, including severefloods and droughts.
Giorgi et al. [1996] investigatedthe role of soil moisture-
rainfall feedbackin the 1988 droughtandthe 1993 flood in
themidwestUnitedStates.HongandPan [2000]andPaland
Eltahir [2001] furtherexaminedthetwoeventsandproposed
differentmechanisms.BosilovichandSun [1999] examined
the1993 flood in themidwestUnitedStatesandpointedout
that the changedmoisture convergencewithin the flood
region, connectedto thechangein the low-leveljet induced
by soil moistureanomalies,wasa majormechanismfor the
rainfall increase.Scharet al. [1999] found a similar mech-
anismin simulationsoverEurope.Liu etal. [1996]modeled
the 1991 flood event in central China with the NCAR
regionalclimate model (RegCM). Sethand Giorgi [1998]
furtherexaminedthe effectsof domainchoiceon thesimu-
lations reportedin the work of Giorgi et al. [1996] and
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showedthatasmallerdomain capturedobservedprecipita-
tion betterin theupperMississippibasinbutthesensitivityof
precipitation to initial soil moisture appearsto be more
realisticin alargerdomain.Giorgi andBi[2000] investigated
internalvariability andshowedthatperturbationsgrow in the
first 5—15daysbutdo not continueto diverge.

[5] Understandingof the importanceof soil moisture to
precipitationvariability hasbeenanobjectiveof anumberof
researchprogramsand activities. A greateffort hasbeen
madeaspart of theGlobal EnergyandWaterCycle Exper-
iment (GEWEX) to conduct field measurementsand to
developmodelsfor studyingsoil moistureandits interactions
with the atmosphericprocesses.An additional goal of the
GEWEX America Prediction Project(GEWEX Americas
PredictionProject(GAPP)SciencePlanandImplementation
Strategy,159 pp.,2000)wasto developanddemonstratea
capability in making reliablemonthly andseasonalpredic-
tions of precipitationandland-surfacehydrologicprocesses
using soil memory. TheNational Centerfor Environmental
Prediction(NCEP)exploredthepotentialto predictsummer
precipitation over the United Statesusing the ensemble
canonicalcorrelationtechniquewith soil moistureasoneof
thepredictors[Mo, 2002].

[6] Becauseoftheextremecomplexityin precipitationand
soil moisturevariability, andin land-atmosphereinteractions,
relationsof soil moistureto subsequentprecipitation vari-
ability are significant only undercertain circumstances.
Various approacheshavebeenapplied to identifying such
circumstances.It wasfound thatsoil moisturepersistenceis
moresignificantin high latitudes,duringwinterseasons,or in
dry climateregions[Delworth andManabe,1988, 1989;Liu
and Avissar, 1999a]. The foreknowledgeof land surface
moisture statecontributessignificantly to predictability in
transitionzonesbetweendry andhumid climates[Koster et
al., 2000]. A numberof feedbackmechanismscould retain
andamplify anomalysignals in soil moistureandtheatmo-
sphere[e.g.,Rodriguez-Iturbeet al., 1991;Entekhabietal.,
1992; Brubakerand Entekhabi,1996; Findell andEltahir,
1997;Eltahir, 1998;Liu andAvissar~1999b].Recentobser-
vationalanalysesof soil moisturemeasurementsdetermined
a spatialscale,at which interactionsbetweensoil moisture
andthelarge-scaleatmosphericprocessesbecomeimportant
[Entin et al., 2000;Liu et al., 2001].

[7] This studyexaminesthecircumstancesby identifying
the spatial patternsof soil moisture which are closely
connectedto monthly-seasonalprecipitation variability. A
regional climate model is used to simulatethe land-atmo-
sphericsystem of eastAsia, the location of one of the
GEWEX studyareas(GEWEX AsianMonsoonExperiment
orGAME). Thesimulatedsoil moistureandprecipitationare
analyzedusing singular value decomposition(SVD). The
simulationandSVD analysisarefirst briefly describedin the
next section.The leading SVD patternsof soil moisture,
temporal relations,and the significanceto prediction of
precipitation variability are presentedin the sections3—5.
Concludingremarksaregiven in thefinal section.

2. Methodology
2.1. Simulation

[s] The secondversionof NCAR RegCM [Giorgi et al.,
1993a, 1993b] with modified explicit rainfall calculation

Figure 1. Regional model domain and topography. The
contourinterval is 500 m.

[Giorgi andShields, 1999]wasusedto simulatevariations
in theeastAsian land-atmosphericsystem.RegCM charac-
terizes regional featuresof climate and land-surfacepro-
cessesat geographicregionsof interest by incorporating
improved schemesof a number of critically important
climate processes,including Biosphere-AtmosphereTrans-
fer Scheme(BATS) land-surfacephysics [Dickinson et al.,
1993]andthe NCAR radiativetransfermodel [Kiehl etal.,
1996], into the standardNCAR/PennsylvaniaStateUniver-
sity MesoscaleModel Version 4 (MM4) [Anthes et al.,
1987]. The Kuo-typesubgrid convectivescheme[Anthes,
1977] was utilized. The model simulatessnow when the
temperatureis below00C. Therate of changein snowcover
is determinedby thebalanceamongthesnowprecipitation
rate, snowmeltingrate andthe rate of sublimation. Snow-
melting happenswhen thesnowtemperature(the sameas
the temperatureof the upper layerof soil) is above 00C.
Snowmelting is estimatedfrom the energy required to
balancethe net surfaceheatingand lower the temperature
to 00C. RegCMwasableto reproducesomeimportanthigh-
resolution spatial characteristicsof climate for major geo-
graphic regionsover the world, including eastAsia [e.g.,
Liu et al., 1996;LeeandSuh,2000].

[9] Figure 1 showsthe simulationdomainand topogra-
phy. The TibetanPlateaustretchesinto the domain with a
maximum height over 5 km. The domain is centeredat
340N and 1 160E. It contains90 by 79 grid points with a
horizontal resolutionof 60 km. Thereare14 vertical layers
with the top model atmosphereat 80 hPa.The initial and
horizontal lateralboundaryconditionsof wind, temperature,
watervapor,andsurfacepressurewereinterpolatedfrom the
analysisoftheEuropeanCenterfor Medium-RangeWeather
Forecast(ECMWF), whoseresolutionis 1 .875~of latitude
andlongitude (roughly200by 175 km at midlatitudes).Soil
water content was initialized as describedin the work of
Giorgi and Bates [1989], i.e., the initial soil moisture
content dependson the specified type of vegetation.
Time-dependentsea-surfacetemperature(SST)was inter-
polated from a set of observed,monthly meanwith a
resolution of 10 [Shea et al., 1992]. A datasetof precipi-
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tation from NCEP wasused to validaterainfall simulation.
All thesedatawere obtainedfrom archivesof the NCAR
Scientific Computing Division. Land type is specified
basedontheglobal 1-kmresolutionInternationalGeosphere
BiosphereProgram(IGBP) land coverdataset [Zengetal.,
2000]. The integration period is from January 1987 to
December1997 with atime stepof 3 mm. The first yearis
consideredasthe spin-upperiodand, hence,excludedfrom
thedataseriesusedin theSVD analysis.We will referto the
last 10 yearsas thesimulationperiod.

[io] A global circulation model (GCM) could be an
alternatetool to producesoil moisture and precipitation
neededfor the SVD analysis.A RCM hasbeenusedmainly
in the considerationthat, with the boundaryconditions
updatedevery 12 hours duringthe integrationperiodusing
“observationaldata” (actuallyacombinationof observation
dataandmodel outputs),a RCM is expectedto produce
relativelyrealistic regionalcirculationpatterns.In addition,
with a higher horizontal resolution of about 50 kin, the
effectsof the groundforcing couldbe bettercapturedby a
RCM.

[ii] Giorgi and Mearns [1999] discusseda numberof
factors affecting the performance of a RCM simulation,
someof which areespeciallyimportant to the simulation
performed here. Most of the western boundary of the
domain is over the Tibetan Plateau.This createsdifficul-
ties in generatingreliable boundaryconditions over the
area. Some large errorsareexpected,mainly for summer
monsoonperiods. During winter monsoonperiods (Octo-
ber through March), the Euro-Asian westerly, a major
planetary-scalesystem, is located north to the Plateau.
During the remainderof the yeal however, the westerlies
split into two branches,oneremainingnorth of the Plateau
(but much closer than during winter monsoon) and the
other locatedsouthof the plateau.The southernbranchof
the western system generatessynoptic and mesoscale
weather systems. Low-level jets associatedwith these
systems transport water vapor from the Indian Ocean,
and bring rainfall to the southernand central China. As
indicatedin the next section,the model overpredictsthe
intensity of the surfacelow over the Tibetan Plateauand
rainfall in central China, This may be related to the
problem of the Tibetan Plateaubeing part of the western
boundary. This problem can not be overcomesimply by
moving the boundof the domain westward.The Tibetan
Plateauis too large.

[t2] Domain size and internal variability createdby dis-
turbancesin initial andboundaryconditionsaretwo other
important issues.Seth and Giorgi [1998] indicated that
RegCMproducedmorerealisticresponseto internal forcing
with a largerdomain,but a betteroverall simulationwith a
smalldomain.Giorgi andBi [2000]found thatperturbations
in initial and boundaryconditionswith RegCMgrow in the
first 5—15 days but do not continueto diverge. Finally,
becauseof the needfor largecomputingresourcesdue to
relatively short time step, RCMs, unlike most GCMs,
usuallyare integratedoverashortperiodup to a few years.
This may adverselyimpact statisticalassessmentsof simu-
lation results.

[is] No attemptsweremadeto evaluatesensitivity of the
RegCM simulation in this study to these factors. It is
implied from the study by Giorgi and Bi [2000] that the

effectsof internal variability relatedto initial andboundary
perturbationson the simulationmight belimited becauseof
the long periodof integrationof the simulation.

2.2. SVD Analysis

[14] SVD is a techniqueto identify coupled spatial
patternswith the maximum temporal covariancebetween
two fields. It has been applied to analyzing relations
betweenseasurfacetemperature(SST)and a meteorolog-
ical field suchasair temperature,precipitation,geopotential
height,or atmosphericheat energy [Wallace et al., 1992;
ling and Wang, 1997; Wangand Ting, 2000; Trenberthet
al., 2002]. A detaileddescriptionof SVD waspresentedin
the work of Brethertonet al. [1992].

[is] Denotetwo fields as u(t) = [U(Xk, t)] and v(t) =

[v(y,, t)], wherexk andyi arespacelocations;k 1, 2
M~,l= 1,2 M~, andM~andiV(~, arethenumberof space
locationsfor a ands’, respectively;And t is time from 1 to
N. SVD analysisseparateseachof thetwo fieldsinto spatial
patternsandtemporalseries,

M
u(t) = YZaktpk

k=I

M
v(t) = >3bk(t)qk,

k.4

(I)

(2)

where Pk and q~ are spatial patterns (principal compo-
nents); ak(t) and bk(t) are temporal series (expansion
coefficients); M is the smaller of M~ and M,,. An SVD
mode is composedof a spatialpatternandits correspond-
ing temporalseries.

[16] p~ and qk areobtainedas the cigenvectors(singular
vectors)of C~,WCJ~ and CI~CUP~ respectively,where~ is

the cross covarianceof u(t) and v(t). The correlation
betweenak andbk hasthe following feature:Assumingthat
the nonnegativecigenvalues(singular values) Uk are in
decreasingorder(i.e., Q> a1 for i <j), then thecorrelation
betweena, andb, is greaterthanorequalto thatof a~ andb,.
This meansthatthelargestresponseoccursbetweenthefirst
pair of spatialpatterns,thesecondlargestresponsebetween
the secondpair, andso on. The first few pairs of modesare
regardedasSVD leadingmodes.

[17] The contribution of the kth pattern to the total
covarianceof the two fields is measuredby squared
covariancefunction (SCF),

M
SCEk= cT~/ZtT~. (3)

[18] Canonical correlationanalysis (CCA) is a similar
andmore populartechniqueto identify coupledpatternsof
two fields. Major featuresarecommonbetweenSVD and
CCA. SVD was used for this study basically due to the
considerationof SVD’s featuresin prediction application.
According to Parnston [1994], SVD is favored when a
predictor and a predictandparticipating in each pattern
linkagearesimilar to thosefoundin the individual dataset
EOF patterns.In this analysis,soil moistureis considered
as a potential predictor for prediction of precipitation
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(a) 500 hPa height

Figure 2. (a) 500 hPa geopotentialheight and (b) sea
surface pressure. The solid and dashed lines represent
RegCM simulationandECMWF dataanalysis,respectively.
Theunitsarem (Figure2a)andhPa(Figure2b), andcontour
intervalsare40 m (Figure 2a)and2.5 hPa(Figure2b).

(predictand). As shown later, there is similarity between
the SVD patternsof the two fields and their individual
EOF patterns.

[19] The dataseriesusedin theSVD analysisaremonthly
meansof soil moisture and precipitation simulated with
RegCM.Thevaluesat everyothergrid point within thearea
of 80—1350E and 18—500N were used. BATS has three
layers—uppersoil, root zone,andtotal soil. The upperand
total soil layers have the fixed depth of 0.1 and 3 m,
respectively.The depthof root zonevariesfrom 1 to 2 m,
dependingon vegetationtype of a grid. Thesethreelayers
correspondto daily, intra-annual,andinterannualprocesses,
respectively.Soil moisture of root zonewas used for the
SVD analysisbecausemonthly-seasonalvariability is the
concern of this study. Note that the properties of soil
moistureseasonalvariability, such as, timescalesandper-
sistence,vary with depthof soil [e.g., Entin et al., 2000].
BATS has very limited capacity to addressthis issue
becauseof its low vertical resolution. Simulation with a

regionalclimatemodelcoupledwith amultilayersoil model
[e.g., Dai et al., 2003] should provide a solution to this
problem.

3. Spatial Patterns
3.1. SimulatedFields

[20] Beforethe SVD resultsaredescribed,adiscussionof
the atmosphericcirculationand hydrologyof eastAsia for
the simulationperiodis first provided.For the convenience
of description,the portion of theanalysisareawithin China
is divided into south(south of 250N), central (25—350N),
north(35—420N),andnortheast(42—520N)China.Thefirst
threeregionshavehumid,semihumid,andsemiaridclimate,
respectively,and northeastChinahas semihumid climate.
Mongolia, westto northeastChina,belongsto semiaridand
aridclimate in itseasternandwesternportions,respectively.

[21] Figure 2 showsthe simulated 500 hPageopotential
height andsea surfacepressureaveragedover thesimula-
tion period. Therearetwo planetary-scalecirculation sys-
tems.Oneis the eastAsian trough in the middle latitudes.
The trough line spreadsfrom northeastsouthwestward
down to the middle centralChina. The other is thenorth-
westernPacific subtropicalhigh. Its centeris locatedsouth
of 200N. Therearealso two systemson theground:ahigh
over most partof the domainand a low over the Tibetan
Plateau.

[22] During a normal summermonsoon seasonfrom
April to September,the Pacific high gradually moves
northwestward[Ding, 1991]. Water vapor is transported
from the Pacific Oceanto easternChina,Korea, andJapan
by southeasterlyflow in thesouthwesternsectorof thehigh.
Between the high and the midlatitude trough are the
monsoonfronts, which are the major synoptic systemsto
produceprecipitation. However, the circulation systems
havelargevariability. Largevariancein 500 hPageopoten-
tial height during the simulationperiodoccurs in thepre-
trough areaover Japan,correspondingto the northwest
Pacific storm track (not shown). Another areawith large
varianceis in westerncentralChina,wherethemesoscaleor
synoptic systemsthat originate over the Tibetan Plateau
moveeastwardduring summerseasons.

[23] The simulated500 hPageopotentialheight is very
close to the ECMWF dataanalysis in spite of a little bit
strongerPacific high. There is a generalsimilarity in the
spatial patterns betweenthe simulated and analyzedsea
surfacepressure.However,the magnitudeof the low over
the TibetanPlateauis oversimulated,andthe two separate
highsovernorthChina(centeredat about400N, 11 50E)and
north Japan(the upperright cornerof the domain)in the
analysisdatamergeinto astrongersingle high centeredover
the oceansouthto Koreain the simulation.

[24] Thedistributionsof precipitationandsoil moisturein
China averagedover the simulation period (Figure 3) are
basicallyin accordancewith the climatologicalregions,as
describedabove.A largeamountof annualrainfall of about
2000 mm over southandcentralChina is producedby the
atmosphericdisturbancesassociatedwith the east Asian
trough and watervapor transportfrom the low latitudes.
Rainfall decreasestoward north China, which has the
annualamount of only 250 mm. NortheastChina,on the
other hand,hasmore rainfall than north China. Similar to

(b) Sea Surfacepressure
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(a) Precipitation

Figure 3. (a) Annual rainfall and (b) soil moisture of the
root-zonelayer relativeto saturation.The solid anddashed
lines representRegCM simulationandobservation,respec-
tively. Theunitsaremm (Figure 3a)and% (Figure3b), and
the contour intervals are 250 mm (Figure 3a) and 5%
(Figure 3b).

precipitation,soil moisture first decreasesfrom south to
north China, and then increasestoward northeastChina.
Some centersof over 60% occurin central andnortheast
China.The driestareais in the westernnorth China,where
soil moistureis abouthalfof that in the moist areas.

[25] Owing to the direct relation to the east Asian
monsoon,whichhaslargeinterannualvariability, thestan-
dard deviation of annual rainfall is as large as 700 mm,
or one third of the average(not shown). The standard
deviation of soil moisture,on the other hand, is relatively
small, only about 10% of theaveragein south,centraland
northeastChina.The smallerratio of standarddeviationof
soil moisturethan precipitationmay suggestthe important
roles of evapotranspirationand runoff in soil moisture
variability. Although soil moisture variations are directly
controlledby rainfall, evapotranspirationandrunoffplay a

role in resistingthetendencyin soil moisturevariations.For
example,awet (dry) soil will leadto large(small) evapo-
transpiration,which in turn reduces(increases)soil mois-
ture. In addition,thewaterexchangebetweenroot-zoneand
deepsoil also preventssoil moistureanomaliesof root-zone
layer from continuousgrowth.The smallerratio may also
suggestlesssensitivity of BATS to theforcing from rainfall
variability at themonthly-seasonalscales.

[26] The spatial patternsof the simulatedand observed
precipitation aresimilar to eachother. However, thereare
two major deficiencieswith the simulation: The model
overestimatesrainfall over most of the continental,and
the maximum rainfall areashifts northwestwardfrom the
southeasterncoastalregion. The abnormallystronghigh in
thesimulatedseasurfacepressureand500 hPageopotential
height should be oneof the responsiblefactors.

[27] Entin et al. [2000] and Liu et al. [2001] analyzed
spatialpatternsof soil moisture in China.Liu et al. [2001]
usedthe measurementsof top 1 -in layer for the periodof
1981—1991. Although continuous distribution was not
available becauseof the sparsemeasurementsites, their
results showedlarge soil moisture over 240mm in south
Chinaand northeastChina, and smallsoil moisturebelow
40 mm in the westernnorth China.It seemsthatthe model
is able to reproduce this pattern. As mentioned before, the
root-zone depth varies with vegetationtype. To roughly
comparethe magnitudewith the measurements,the simu-
lated soil moistureof root-zonelayer (in mm) is converted
into the equivalentvaluesof a “1-rn layer” by dividing the
depthof theroot-zonelayer.Themagnitudeof soil moisture
of the “1-rn layer” is about300 mm in south,central, and
northeastChina, and about 60 mm in the westernnorth
China. Sothe simulatedmagnitudeis about25%morethan
that of the measurementsin themoist regions.The overes-
timation of soil moisture should be related to the over-
estimatedrainfall by the model.

3.2. SVD Patterns
[28] Soil moisture(u) andprecipitation(v) of eachmonth

were first normalizedby subtractingtheir respectivemulti-
year averagedivided by meansquaredroot of that month,
which was expectedto have a major portion of seasonal
cycle removed. SVDthen was applied to the series. Figure 4
shows the first four SVD leading patterns of soil moisture

(pt), which are multiplied by their correspondingsingular
value (Uk). The 1st soil moisture mode consistsof a pair
of positive and negativeanomaliesseparatedbetween
32—350N. The anomalousregions are basically zonally
oriented. Each region has a size about30 degreesx 15
degrees, equivalent to the size of about 3000 by 1500 km.
The 2nd moderepresentsa patternof more or less mend-
ionally orientedanomalies.Therearetwo areasof negative
anomalies,one spreadingfrom Mongolia and northeast
Chinadown southwestwardto centralChina, and the other
in the westernsouthChina. In betweenarepositiveanoma-
lieswith two centerslocatedin thecoastalsouthChinaand
the westernnorth China. The size of the anomalies in
Mongolia-northeastChina area is comparableto that of
the 1stmode,while that inotherregionsis reducedby about
half The3rdmodeis similar to the2ndmodein termsof its
meridionalorientation.However, the negativeanomaliesin
the north do not spreadover Mongolia. The last mode

50N

(1) Sail moisture
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(a) Mode 1 (SCF=28.2%)

(c) Mode 3 (SCK.=13.O%)
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Figure 4. The four SVD leadingpatternsof soil moisture weightedby their correspondingsingular
values. SCF standsfor squaredcovariancefunction. Seecolor versionof this figure in the HTML.

containspositive anomaliesin most areas, with weak
negativeanomaliesoccurring in the southeasterncoastal
area, northeastChina, and the westernboundaryof the
domain.

[29] SCFs of the four modes are about 28, 21, 13, and 8%
(also seeTable 1), andthe accumulatedSCFis about 70%.
Physically,the valuesshownin Figure4 representcorrela-
tion betweensoil moisture field and kth SVD expansion
seriesof precipitation. The critical correlation coefficients,
which are the minimum values for correlations to be
statistically significant at specific confidencelevels, are
about0.3 and 0.23 at the confidencelevels of 99.9% and
99%, respectively.The anomaly centersof all the leading
modes exceptthe3rd one reachthe 99% confidencelevel.
Thevarianceof eachof the four SVD expansioncoefficient
seriesaccountsfor from 6 to 16% of total varianceof soil
moisture.The accumulatedcontributionis about45%. The
correspondingvalue for precipitation is smaller with an
accumulatedcontribution of about26%. There are close
relationships betweeneach of the correspondingpatterns.
The correlation coefficients betweensoil moisture and
precipitation for each pair of expansioncoefficient series
arefrom 57 to 78%.

[30] The SVD spatial patternsof precipitation (not
shown)are mostly similar to thoseof soil moisture.This
implies that theclosestrelationsbetweensoil moistureand
precipitation would occur when their anomalouspatterns
are similar to each otherandthat the feedbackbetweensoil

moisture and precipitation would be mostly positive at
monthly-seasonalscales.Major differences are the negative
anomaliesof the 3rd modemovedup to Mongolia, andthe
positiveanomaliesof the 4th modeextendedover a larger
area.

3.3. CorrespondingAtmosphericPatterns
[3] Regression analysis is a useful tool for understanding

the physical processes responsible for coupled SVDpatterns
[WangandTing,2000]. It was usedin this study to find the
correspondingatmosphericpatternsto the soil moisture
SVD patterns. Linear regressionrelationswere established
at each location betweeneach of the four SVD leading
modes and the 500 hPa geopotentialheight or sea level
pressure.Consideringthe seasonaldependenceof the SVD
modes, which will be described in the next section, the
regressionanalysis was done only for two seasonsof a year
when the spatial correlationbetweensoil moistureand an
SVD leadingpatternis significant.The chosenseasonsare
fall and winter (Septemberthrough February) for the 1st
mode,and springand summer(MarchthroughAugust) for
the other modes. Figure 5 showsthe regressionrelations,
expressed by correlationcoefficients,betweensoil moisture
SVD modes and the atmosphericanomalousfields.

[32] For the 500 hPageopotentialheight,strong regres-
sion relations for the 1st and4th SVD modes occurmainly
in middle latitudes,wherethe atmosphereis controlledby
theeastAsiantrough.Thissuggeststhatvariability with the
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Table I. Statistics of the Four SVD Leading Modes of Soil
Moisture(5) and Precipitation(P)~’

Modes 5CF,% O~, % o~, % r
5~,

28.2 13.4 9.i 65.8
2 20.8 iOU 6.4 77.7
3 13.0 15.8 4.7 57.4
4 8.4 5.8 6.3 65.3

~SCF,o, and rsp representsquaredcovariancefunction,varianceratioof
an SVD expansioncoefficient seriesto original dataseries,andcorrelation
coefficient of SVD expansioncoefficient series between S and P,
respectively.

trough would be primarily responsible for the generation of
the two soil moisture SVD modes. The regression relations
for two other modes, on the other hand, are also consider-
able in south and central China, suggesting that variability

500 hPa Height (in)
SON

40K

30N

20K

50K

40K
C’s

30K

20K

SON

C)

1002 1102 1202 1302

40K

30K

20K

1002 1102 1202 1302

GCP 17-7

in both the east Asian trough and the mesoscale and
synoptic systems in the lower latitudes would be responsible
for the generation of the two soil moisture modes.

[33] There are two types of vertical variations in the
relations. The anomalieshave the same signs between
500 hPa geopotential height and sea surface pressure for
the 1st and 4th SVDmodes. For the 1st mode, the signs of the
regression coefficients are mostly negative at both eleva-
tions.ThestrongestconnectionsoccurovernortheastChina,
a region with the middle-latitude trough in theatmospheric
field (Figure 2) and extensive positive anomalies in the
SVDpattern (Figure 4). Physically, a positive anomaly in
the geopotential height (sea surface pressure) means a
weakertrough, which leads to reducedprecipitation and,
therefore,negativeanomaliesin soil moisture.In this case,
feedback of soil moisture to precipitation would be
veryweak(It will beseenin thenextsectionthattherelation

~fc Pressure (bPa)

1002 1102 1202 1302

Figure 5. Regressionrelationsof (left) the anomalous500 hPageopotentialheight and (right) sea
surface pressure with the four SVD leading modes (from top to bottom). The dense and sparse dot
shadingsdenotevaluesabove10% andbelow —10%, respectively.
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Figure 6. Time lag correlation coefficients between SVD
expansion series for (left) soil moisture leading precipitation
and (right) precipitation leading soil moisture. (a—d) The
four SVD leadingmodesand(e) original data.Thelight line
in eachpanel indicatesthe99.9% confidencelevel.

of soil moisture to subsequentprecipitation variability is
relatively weak for this type of SVDmodes). For the 4th
mode, the signs are mostly positive at both elevations,
though the areas with the strongest connections occur over
the western Mongolia in 500 hPa geopotential height, but
over the coastal China in sea surface pressure. For two other
SVD modes, on the other hand, the regression shows
opposite signs between the two elevations in some regions.
For the 2nd mode, the regression coefficients are mostly
negative in 500 hPa geopotential height and positive in sea
surface pressure over the coastal areas; for the 3rd mode, the
regression coefficients in the western north China are mostly
positive in 500 hPa geopotential height and negative in sea
surface pressure, and those in the other areas are mostly
negative in 500 hPa geopotential height and positive in sea
surface pressure.

[34] On the basis of their features of the corresponding
atmospheric patterns, the four leading SVD soil moisture
modes(bothspatialpatternsandtime series)can bedivided
into two types. Type I consistsof the 1st and 4th soil
moisture SVD modes,whosecorrespondingatmospheric
anomalouspatternsare featuredby strong connectionsin
middlelatitudesin themiddle troposphere,andby thesame
signsof anomaliesbetweenthemiddleand low troposphere;
type II consists of the 2nd and 3rd modes, whose
correspondingatmosphericpatternsare featuredby compa-
rableimportancebetweenthe atmosphericsystemsin the
middle andlow latitudesandby oppositesignsbetweenthe
middle and low tropospherein someregions.

[35] Entin et al. [2000] andLiu etal. [2001] used spatial
scale as a criteria to define soil moisture variability types
which have different features in the interactions between soil
moistureandthelarge-scaleatmosphericprocesses.Herewe
categorysoil moisturevariability into different typesbased
on its spatialpatternsandrelationsto the atmosphere.The
analysisin thenextsectionwill showthatthetwo typesof soil

moisturepatternshavedifferent featuresin therelationstosubsequentprecipitationvariability.

4. Temporal Relations

[36] Figure 6 shows time lag correlation coefficients for
the expansioncoefficient series of the four leading SVD
modesbetweensoil moistureand precipitation. The corre-
lation for kth series(k 1, 4) with soil moisture leading

N—rn
precipitation was calculated by the formula >1 a

1, (t)

b1,(t + in), with a and b normalizedand in the time lag
length in month. It measures how close an SVD soil
moisturepatternis relatedto subsequentprecipitationvar-
iability. The formula for the correlationwith precipitation
leadingsoil moisture is obtainedby exchanginga and b.

[37] The correlationsfor the expansioncoefficient series
of type II SVD modes are larger than those of type I SVD
modes. For type 11, the correlation coefficients with soil
moisture leading precipitation are significant for the lag
time up to six months at the 99.9% confidencelevel (the
critical correlationvalue is 30%). In contrast,thosefor type
I areonly barelysignificantfor the lag time of onemonthat
theconfidencelevel. This resultsuggeststhat soil moisture
could affect the subsequentprecipitation at monthly-sea-
sonal scalesmainly for type II SVD soil moisturemodes.

[35] There are also differencesin the connectionsof
precipitation to its subsequentvariability, a measureof
persistenceof precipitation anomalies,between the two
types of SVD modes.The persistencemeansthat, if there
are precipitation anomaliesin a certainmonth, it is likely
that the same anomalieswould repeat in the following
months.Persistencecan be anotherfactor for predictionof
precipitation variability in addition to the relations between
soil moisture and precipitation.

[39] Figure 7 displays the features of the persistence. It
is measured by autocorrelation and calculated by the

formula > c~, (t) Ck(t + in), with c being eithernormalized

a or b. Note that both this correlation and the time lag
correlationdescribedin Figure 6 measurerelationshipat
two different times, but the former is betweentwo varta-
bles,while thelater is with onevariable.Figure 7 doesnot
display the coefficients of zero month lag, which always
are 100%. Soil moisture showsstrongpersistencebecause
of its long memory,consistentwith the previousanalyses
[e.g., Delworth and Manabe,1988, 1989; Vinnikovet al.,
1996; Lin and Avissar, 1 999a, 1 999b]. The persistenceof
precipitation is stronger for type II than type I SVD
modes. The correlation coefficients are significant for time
lags up to five (three) months for the series of the 2nd
(3rd) SVD mode at the 99.9% confidence level. In
contrast, they are not significant for the series of the 1st
and4th SVD modesexceptthat of the 1st SVD modewith
one-month lag.
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coefficients.

[40] The aboveresults indicate that, among the four
leadingSVD modesof soil moisture,only thoseof typeII
havecloserelationshipsto subsequentvariability of precip-
itation. Some explanationscan be obtainedbasedon the
featuresof theircorrespondingatmosphericpatterns,that is,
oppositesignsof anomaliesbetweenthemiddle troposphere
andthesurface,andsignificantanomaliesat bothmiddle and
low latitudes.Oppositeanomaliesbetweenthe middle and
low troposphereis mostlygeneratedby abnormalheatingor
cooling limited in the low troposphere,whosehorizontal
scaleis smallandlife time is short. Thusthefeatureusually
indicatesweak control by an atmosphericsystem. As a
result, soil moisture plays a relatively important role in
variability of precipitation. In contrast,the samesigns of
atmosphericanomaliesbetweenthe two heightsfor type I
SVD patternsusually indicate strongcontrol by an atmo-
sphericsystem throughoutentire troposphere.In this case
soil moisture’srole is less significant. The secondfeature
mayreflect alow westerly index, i.e., anomalouslystrong
planetary-waveactivities. This favors the developmentof
synoptic systemswhich have small scalesandmove fast.
Their effectson long-termatmosphericprocessesarevery
limited. As a result, the role of soil moisture becomes
relatively important.

[41] Physical mechanisms responsible for the relation-
ships of soil moisture with subsequentprecipitationvari-
ability at monthly and seasonalscaleswereinvestigatedby
analyzinga numericalexperimentwith RegCM(Y. Q. Liu,
personalcommunication,2002). In the experiment initial
soil moisture in China is specified with its wilting-point
valueand RegCMis run from May throughAugustfor each

of the five years(1988—1992). The results suggesttwo
mechanisms for the effects of the dry spring soil on summer
precipitation.Oneis reducedwatervaportransportfrom the
surface to the cloud layer, which leads to reduction in large-
scale rainfall. The other is intensified thermal instability due
to more sensibleheatflux from the surface,which leadsto
increasein convective rainfall. The overall rainfall is
reduced.The first mechanismwas found in the simulation
with dry soil conditionsin thecentralUnited States[Giorgi
et al., 1996]. Other mechanismshavebeenproposed.For
example, Eltahir [1998] proposedpositive feedbackmech-
anismslinking soil moisture,PBL moist staticenergy,and
rainfall. BosilovichandSun [1999] andScharet a!. [1999]
found the relationsof soil moistureanomaliesto the low-
leveljet andhorizontalwatervapor convergencewithin the
flood region.

[42] Note that,in comparisonwith precipitation,monthly-
seasonal variability of soil moisture should have much
higher predictability because of much stronger persistence
of soil moisture (Figure 7) and larger correlationswith
precipitationleadingsoil moisture (Figure 6). In addition,
the differencesin the relationshipsof precipitation with
subsequent soil moisture variability and in soil moisture
persistencebetweenthetwo typesof spatialpatternsarenot
obvious.

4.1. SeasonalDependence
[43] Both soil moisture memory and the intensity of

land-atmosphere interactions vary with season. The persis-
tence of soil moisture is stronger during winter than
summer seasons [Delworth and Manabe, 1988], while
the effects of soil moisture on precipitation is more
significant during warm than cool seasonsbecauseof
larger rate of land-surfacewater and energy exchanges.
This suggeststhat the SVD patternscould havedifferent
importancefor variability of soil moistureandprecipitation
during variousseasonsof a year. To analyzethe seasonal
dependence,spatial correlationcoefficientsbetweeneach
of soil moistureandprecipitationandits four leadingSVD
patterns are calculated in the following steps: For each of
the 12 months in a certain year, compute spatial correlation
coefficients between soil moisture or precipitation field and
each of its SVD patterns;Repeatthe procedureover the
10 yearsof the simulatedperiod; Then obtainthe averages
overthe 10 yearsfor eachmonth. The resultsareshownin
Figure8. The critical correlationvaluefor 99% confidence
level is about10%.

[44] The spatial correlation coefficients betweensoil
moistureandtheSVD patternsof type II modesarelarger
in spring andsummerseasons,indicating more chancefor
this typeof patternsto appearduringthe two seasons.This
suggeststhatthe intensity of land-atmosphereinteractions
should be amore important factorthan persistencefor the
developmentof the SVD soil moisture patterns.On the
otherhand,the spatialcorrelationcoefficientsbetweensoil
moistureandits 1st SVD patternare largerin winterandfall
seasons.There is no clear seasonaldependencefor the4th
mode.

[45] The spatial correlationcoefficientsbetweenpreclpt-
tationand its SVD patternshavegenerallysimilar features
to thoseof soil moisture.Oneexceptionis thatthe coeffi-
cient for the 2nd modehas no significantseasonaldepen-
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Figure 8. Seasonalvariations of spatial correlation
coefficients between a field and its four SVD leading
modes (from top to bottom). The heavy and light lines
representsoil moistureandprecipitation,respectively.

dence.Another exception is the largecorrelations coeffi-

cientsin summerandfall for the4th mode.

4.2. Time Evolution

[46] Figure 9 showsthe evolution of the SVD expansion
coefficient seriesoverthesimulationperiod. The evolution
is similar betweensoil moistureand precipitation.Among
various scaleswith the expansioncoefficient of the 1st
mode is one-cyclevariation. The negative and positive
values occur during the first and secondhalves of the
simulationperiod, respectively.This meansthat thepattern
of dry anomaliesin the southernportion of Chinaandwet
anomaliesin the northern portion is dominant during the
first haW while an oppositepattern is dominant in the
secondhalf (refer to Figure 4). The expansioncoefficient
for the2nd soil moisturemodealsohasone-cyclevariation
but with different phase. Negativepeak occurs in the
middle, while positive peak occurs in the beginning and
end of the simulation period. The variation may be of
significance for prediction of decade-scale variability. It is
possiblethat the one-cyclevariation is part of a longer
periodof variationbeyondthe simulationperiod. Causesfor
the one-cyclevariation need to be investigatedfor any
possibleimplications.

[47] The variability of the SVD expansioncoefficient
seriesfor the 3rd and 4th modesis more frequent,about
threecycles over the simulationperiod. The peaksoccur
duringtheyearsof 1989, 1992,and 1997 for the 3rdmode,
and1988, 1993, and1996 for the4th mode.The frequency
is comparableto that of the El Nino/La Nina events,which
haveperiodsof 2—S years.The El Nino eventsduring the
simulationperiodsoccurredduringtheyearsof 1991 —1992,
1993, 1994, and 1997—1998, and the La Nina events
occurredduring 1988—1989and1995—1996.It seemsthere

areno clearmatchesin thetiming betweenthepeaks/valleys
of theSVD expansioncoefficientseriesandtheEl Nino/La
Nina events.

5. Predictive Significanceof SVD Patterns

[48] We haveanalyzedtwo featuresof the SVD modes,
that is, time lag correlation with soil moisture leading
precipitation,andautocorrelationof precipitation.Herewe
comparewith the correspondingfeaturesof original data
seriesandEOF patternsto further illustratethesignificance
of the SVD patterns for prediction of monthly-seasonal
precipitationvariability.

5.1. Original Data Series
[49] The lastpanelsof Figures6 and7 showsthetime lag

absolute correlation coefficients between soil moisture and
precipitation, and the autocorrelationcoefficients of soil
moistureor precipitationof original dataseries,respectively.
Themethodto obtainthesecoefficientsarethesameasthose
for thepanelsa—d ofthecorrespondingfigure exceptthatthe
spatial averageis made to the absolutevalues of the
coefficients over all locations. Note the difference between
the time lag correlationand autocorrelationas mentioned
above.

[so] Although the simultaneouscorrelationcoefficient
(zero lag month) of 40% is comparableto thoseof the
SVD leading modes, the correlation coefficientsof the
original dataserieswith soil moistureleadingprecipitation
by onemonth or longerareonly about15%. Meanwhile,the
autocorrelationcoefficients of the original precipitation
series are much smallerthan thoseof precipitation SVD
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Figure 9. Temporal variations of the expansioncoeffi-
cientsof thefour SVD leadingmodes(from top to bottom).
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expanston series. The one-monthlag correlation coeffi-
cients, for example,are below 20% for the original data
series,in comparisonwith about30—50%for the lst—3rd
SVD modes.

[s ] This result suggeststhat, if usingsoil moistureand/or
precipitation as a predictor to forecast monthly-seasonal
precipitation variability, a better predictability could be
achievedby using the SVD patternsthan original dataat
individual locations.Statisticalpredictionmodelscouldbe
developedon basisof the spatialpatternsidentified by the
SVD analysis. A numberof techniquesare available for
developing such models. One of them is to developa
statisticalmodelusingSVD spatialpatternsof soil moisture
as a predictor, similar to the methodusing CCA patterns
[Barnett and Preisendorfer, 1987; Barnston, 1994]. An
attempt was made in a recent study [Liu, 2003] to build
such a model and to provide predictive evidencefor the
importanceof the SVD soil moisturepatternsin improving
predictabilityof monthly-seasonalprecipitation.Themodel
is derivedfrom a regressionequationconnectingthe SVD
patternsof soil moisture andprecipitation. Skill of the
model in predicting monthly and seasonalrainfall in the
monsoonregionof eastAsia is evaluatedby usingacross-
validation method.The preliminaryresults do show some
improvementin the predictability. The results,on the other
hand,alsoindicategenerallya low level of predictionskills.

[52] Another techniqueis ensembleforecast [Mo, 2002].
Soil moistureis usedasoneof predictors,togetherwith sea
surfacetemperatureandotherelements.SVD is performed
for eachpredictorseparately.An ensemblecan be formed

using the predicted monthly-seasonalprecipitation from
different predictors.This techniquemay havesomeadvan-
tagesover amodelwith soil moistureusedas only predictor
and is expectedto display betterpredictionskills.

[53] Note that, thereis notmuchdifferencein thetime lag
correlationbetweenprecipitationandsubsequentsoil mois-
ture variability and in the autocorrelationof soil moisture
betweenthe original dataseries and the SVD expansion
senes.This suggestsless importanceof the SVD patterns
for predictionof monthly-seasonalsoil moisturevariability.

5.2. EOF Patterns
[54] EOF is atechniquesimilar to SVD in termsof its role

in identifying major spatialpatterns.It hasbeenextensively
used in meteorologicaland hydrological analyses.Wang
andKumar [1998], for example,usedEOF to analyzesoil
moisturepatternsandtheeffectson variability of thesurface
climate in the United States.A differencefrom SVD is that
it is only appliedto onefield.

[55] Figure 10 shows four leading EOF patterns of soil
moisture.The 1st EOF patterndisplaysnegativeanomalies
in the westernChinasurroundedby positiveonesin south,
east, andnorth. The 2nd EOF patternconsistsof apositive
area in the north and a negativeone in the south.The 3rd
EOF patternroughlyhastwo pairsof positive andnegative
anomalies. And the last one is featured by dominant
negativeanomalies.Thefour EOF patternscontributeabout
50% to total variance (Table 2). Comparing theseEOF
patterns with the four SVD patternsof soil moisture,it
seemsthat the 2nd EOF andthe 1stSVD patternaresimilar
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Table 2. Statisticsof EOF Analysisa

Modes, S Modes, P
0s. % 0P, r~,,, %

3 22.3 7.0 19.0
2 I 12.9 11.3 29.5
3 4 10.7 6.6 18.4
4 2 4.6 8.5 35.2

~Sand P representsoil moistureand precipitation, respectively. o is
covariance,and r

5p is correlationcoefficientof EOF expansioncoefficient
seriesbetweenSandP.

to someextent.The 4th EOF andthe4th SVD patternare
similar to each other but their signs of anomaliesare
opposite (i.e., the 4th EOF has positive anomaliesin a
regionwherethe4th SVD hasnegativeanomaliesandvise
verse).

[56] There are many similarities between the corre-
sponding EOF patternsof precipitation (not shown) with
thoseof soil moisture.The relatedstatisticsof precipitation
EOF patternsis listedin Table2. Note that,becausethekth
(k 1, 2, 3,4) EOF modesof soil moistureandprecipitation
do notnecessarilycorrespondto eachother,theorderof the
precipitationmodeshavebeenchangedto k 3, 1, 4, 2 to
ensurethat, in the new order, the kth modeof soil moisture
has a relatively larger correlation with the jth modeof
precipitationfor] = k than] f k.

[57] Figure 11 showsthe time lag correlationcoefficients
betweensoil moistureand precipitationof the EOF expan-
sion series.No correlation coefficient reachesthe critical
correlation(30%) at the 99.9%confidencelevel exceptfor
one case of precipitation leading soil moisture by one
month. In addition,thesimultaneouscorrelationcoefficients
of theEOFtime seriesare 19—35%,only about 1/3 to 1/2 of
thosefor SVD. Theseresultsclearly indicatethe advantage
of SVD over EOF patterns in connecting soil moisture to
subsequentprecipitationvariability.

6. Concluding Remarks

[ss] Singular value decompositionanalysishas been
conductedto identify the soil moisture spatial patterns
closely relatedto monthly-seasonalprecipitationvariability
in east Asia. The two hydrological fields were obtained
from a simulation of a decadewith the NCAR regional
climate model. The resultsprovide someinsights into the
importanceof spatialpatternsof soil moistureto prediction
of monthly-seasonalvariability of precipitationin themon-
soon region.

[59] Theresultssuggestthatthepredictabilityof monthly-
seasonalprecipitation variability could be improved by
using soil moistureas apredictor in theform of its coupled
SVD patternswith precipitation insteadof the original data
at individual locations. The SVD spatial patterns of soil
moisture show much closer relationshipswith subsequent
monthly-seasonalprecipitationvariability thanthe original
datado. Therelationsin theform of SVD patternsarealso
moresignificant thanthosein the form of FOFpatterns.

[60] TheleadingSVD modesof soil moisturein eastAsia
arecategorizedinto two typesaccordingto their relation-
ships with the atmosphericanomalies.Only those SVD
patternscorrespondingto the atmosphericanomalouspat-
terns with opposite signs betweenthe middle and low
troposphereandwith comparablemagnitudein the anoma-

lies over both middle latitudesandsouth-centralChina are
found to haveclose relationsto subsequentmonthly-sea-
sonalprecipitationvariability. The rolesof this typeof soil
moistureSVD patternsare more significant in spring and
summerseasons.To betterunderstandphysicalsignificance
of thesetypesof SVD patterns,numericalexperimentswith
a regional/globalclimate model are neededto investigate
theresponsesof precipitationto initial soil moistureanoma-
lies, with their spatial distribution specifiedbasedon the
SVD patterns.

[si] A reliablesimulationofthe land-atmospherichydro-
logical processesis essentialto understandingthe impor-
tanceof spatialpatternsof soil moisture.As in otherclimate
models,precipitationsimulation is oneof theprocesseswith
greatuncertaintiesin RegCM.This certainlywould further
affect the simulation of soil moisture and the land-atmo-
sphericinteractions.Another uncertaintyis from the snow
simulation with RegCM.The versionof the modelusedin
this study [Giorgi et al., 1993a, 1993b] wasnot coupled
with an explicit snowscheme[e.g., Yanget al., 1997]. The
continuousefforts in developingparameterizationsof pre-
cipitation andsnowshouldbe critical to improvingsimula-
tion of atmosphericandsoil hydrologicalprocesses.

[62] No observational validations are available for the
simulatedSVD spatialpatternsof soil moisturein eastAsia,
basicallydueto thelack of soil moisturemeasurementsfor
the simulationperiod(1988—1997).There are severalsoil
moisturedatasetsfor China. The oneused in the work of
Entin et al. [2000] andLiu et a!. [2001] containscomplete
time seriesoveraperiodof 11 years,butit coversadifferent
period (1981—1991)from the simulation period. Another
data set [Lia et a!., 1994] contains measurementsat
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hundredsof stationsovera decade-longperiod. However,
the dataare discontinuousfor northernChina during cool
seasonsdueto frozensoil. An alternatedatasetavailablein
nearfuture is the global soil moistureseriescalculatedby
land-surfacehydrological modelswith observedprecipita-
tion from, e.g., the GEWEX/GlobalLand-AtmosphereSys-
tern Study(GLASS)[Dirmeyer, 2002]. The application of
measuredprecipitationis expectedto producemorereliable
soil moisture,though it is still a model product.

[63] SVD, similar to other principal componentanalysis
(CPA) techniqueslike CCA and combinedCPA (CCPA),
identifieslinear connectionsbetweentwo fields [Bretherton
et a!., 1992]. The processesof soil moistureandprecipita-
tion variability andtheir interactions,however,arebasically
nonlinear,evenat long-ternscales.
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